

FERRAMENTAS DO EXCEL PARA DETERMINAÇÃO DO INTERVALO DE CONFIANÇA EM MÉTODO COMPARATIVO DIRETO DA NBR 14.653-1

Autores: ANDRÉ GUSTAVO FERREIRA PINTO;

Introdução

O método comparativo direto dos preços de mercado é a metodologia mais indicada pela Norma Brasileira de Avaliações de Bens, NBR 14.653, para determinação do valor de um bem seja ele um terreno, imóvel, maquinas ou empreendimentos. Baseia-se na coleta de dados do mercado para determinação de um modelo estatístico que muito se assemelhe ao bem avaliando, para que o resultado seja o mais próximo possível do valor de mercado daquele bem. O intervalo de confiança de um modelo é uma região da curva de distribuição normal onde existe mais de 95% de chance de o valor do imóvel estar dentro deste intervalo. A NBR 14.653 permite que esse intervalo de confiança possa ser de no máximo 30% (15% para mais e 15% para menos) para modelo com grau de fundamentação 1, 20% (10% para mais e 10% para menos) em modelos com grau de fundamentação 3. Quanto maior o Grau de Fundamentação do Modelo mais próximo do valor de mercado estará o bem avaliando. O software Excel da Microsoft é um programa de planilhas eletrônicas que auxilia em rotinas de cálculos desde básicos a complexos, e tem, em sua biblioteca de ferramentas, uma enorme gama de aplicações na área de análise de dados e estatística.

Material e métodos

Para realização do trabalho foi feita uma pesquisa de mercado na cidade de Guanambi – BA no dia 16 de Junho de 2018, através de informações de imobiliárias da cidade. Os dados coletados foram área do imóvel e valor de venda. O padrão construtivo das residências é igual, não sendo necessária a análise do padrão como variável para o modelo estatístico. Os dados levantados encontram-se na Figura 1.

O bem avaliando é uma casa localizada em Guanambi - BA no bairro centro na rua espirito santo n 179 casa de esquina com 142 metros quadrados de construção. Padrão médio, Idade 22 anos, localizado ao lado de uma academia, a três quadras do colégio estadual Luís Viana, a 50 metros de uma farmácia e 1 supermercado, a 70 metros do hospital municipal, a 150 metros de uma praça para pratica de cooper.

Com uma análise do mercado da cidade será adotada a variável área, assim temos K=1, com um N mínimo de 6 para Grau de fundamentação 1, 8 para Grau 2 e 12 para Grau de fundamentação 3. Para o exemplo deste trabalho foram utilizados 11 dados, atingindo neste quesito o Grau de Fundamentação 2 da NBR 14.653.

Com os dados tabelados se obtém o valor por metro quadrado, a média de área da amostra e a media de preço por metro quadrado da amostra. Após isso é feito o Gráfico de Dispersão representado pela Figura 1 para determinação da reta de regressão e equação da reta.

Após analise da inclinação da reta e gráfico de dispersão utiliza-se a ferramenta Regressão, constante na seção de Analise de Dados do programa Excel para obter os valores de r, r quadrado, erro do modelo, F de Snedecor, desvio padrão e outros.

Resultados e discussão

Após a plotagem dos resultados da regressão na planilha Excel, representados pela Figura 2A, pode-se analisar que R - Múltiplo = 0,855, r- quadrado = 0,731 e desvio padrão = 103,455. O R - Múltiplo é a correlação entre a variável e o item da coordenada y da regressão, no caso estudado preço por metro quadrado. Um valor acima de 0,8 mostra que a área do imóvel está diretamente ligada ao seu custo final. O r - quadrado(R) representa o quanto as variáveis explicam o modelo adotado na regressão. A classificação do resultado de R entre 0,7 e 0,9 torna o modelo considerado forte.

A Figura 3 representa a Analise de Variância do fator área sobre o preço, trazendo os erros, as somatórias dos quadrados dos mesmos, o valor F de Snedecor calculado, o F de significação, o teste t e outros dados estatísticos para a análise do modelo.

O valor F calculado deve ser maior que o valor F tabelado pela distribuição de Snedecor, pois quanto maior o F calculado, menor a chance de rejeição de H0. Para encontrar o valor F foi utilizada uma fórmula do Excel =INV.F, que dentro dos dados solicitados se exige a probabilidade (no caso 95%), o grau de liberdade 1 (quantidade de variáveis) e o grau de liberdade 2 (resíduos).

O F de significação é a probabilidade de rejeição do modelo. Não pode ultrapassar 1% para Grau 3 de fundamentação, 2 % para Grau 2 de fundamentação e 5% para Grau 1 de fundamentação da NBR 14.653.

Os dados do modelo se enquadram nos quesitos da norma como pode-se observar na Figura 2 B e Figura 3 C. Para um melhor modelo e que melhor se explica, as somatórias dos quadrados do resíduos devem ser a menor possível, para que haja um maior grau de precisão no trabalho.

O dado constante na coluna "valor P" da Figura 2 C é o erro que a variável pode trazer para o modelo. Esse valor pode ser até 10% para Grau de Fundamentação 3, 20% para Grau de Fundamentação 1 da NBR 14.653.

Após a análise dos erros e resíduos do modelo pode-se ver que todos alcançaram fundamentação de grau 3 segundo a NBR 14.653 para aprovação do modelo estatístico para avaliação do bem por método comparativo direto de dados do mercado. Após essa análise e calculado o valor estimado do bom avaliando utilizando a formula:

Valor_est = Coeficiente_interceção + (Coeficiente_área*área)

Os valores de **Coeficiente_interceção** e **Coeficiente_área** são dados pela equação da reta do gráfico de dispersão e podem ser vistos na Figura 3 B. Sendo a área do bem avaliando 142 m², o valor estimado por metro quadrado de construção é de R\$ 2029,79 (Dois mil e vinte e nove reais e setenta e nove centavos).

Após determinação do valor estimado por metro de construção é necessário fazer o cálculo dos fatores que influenciam no intervalo de confiança e grau de precisão do modelo. O primeiro fator é chamado de T90, que é uma análise bicaudal do modelo, sendo calculado pela fórmula do Excel INV.T. Esta fórmula pede a porcentagem da distribuição normal (no caso 90%) e o valor de N-1 (números de amostras menos um). O valor de T90 para o modelo foi de 1,372. O segundo fator a ser calculado é o desvio padrão dos valores do preço por metro quadrado da amostra, que usando a fórmula DESVPADA do Excel foi encontrado 189,246. O terceiro fator calculado é a raiz de N (raiz quadrada do número de amostras), onde achamos o valor de 3,317. Por final calculamos o fator de correção do intervalo de confiança que se dá pela fórmula:

[Desvio Padrão / (raiz de N)] * T90

O valor encontrado para o Fator de correção do intervalo de confiança foi de 78,29.

O intervalo de confiança então se dá no limite inferior por: (2029,79 - 78,29) = R\$ 1951,50 / m²

O intervalo de confiança então se dá no limite superior por: (2029,79 + 78,29) = R\$ 2108,08 / m²

Por fim se calcula o Grau de precisão do modelo que é dado pela subtração do limite superior pelo inferior do intervalo de confiança e dividido o resultado pelo valor médio do preço por metro da amostra (R\$ 2028,21). Sendo assim o grau de precisão do modelo foi de 8%, se enquadrando no Grau 3 de Fundamentação da NBR 14.653.

Conclusão

A utilização das ferramentas do software Excel para analise estatística e de dados foi de muita valia, pois, se fosse necessário a realização do cálculo das matrizes e vetores para se achar o erro do modelo e outros fatores primordiais para o intervalo de confiança, levaria um tempo demasiado que o profissional poderia dedicar à pesquisa de mercado para melhora do modelo ou até mesmo revisão dos cálculos, fazendo assim uma avaliação de maior grau de precisão e fundamentação, enriquecendo o trabalho executado. Deve-se sempre ressaltar que as ferramentas utilizadas servem como apoio para o profissional, que deve estar atento a qualquer possível erro ou distorção no modelo.

Referências bibliográficas

ABNT - NBR 14653-1 - Avaliações de Bens - Procedimentos Gerais, Rio de Janeiro, 2000.

ABNT - NBR 14653-2 - Avaliações de Bens - Imóveis Urbanos, Rio de Janeiro, 2000.

DADO	ÁREA (m²)	R\$/M ²	Valor	
1	128	R\$ 1.992,19	R\$	255.000,00
2	192	R\$ 2.343,75	R\$ -	450.000,00
3	183	R\$ 2.185,79	R\$ 4	400.000,00
4	149	R\$ 2.181,21	R\$	325.000,00
5	154	R\$ 1.948,05	R\$	300.000,00
6	98	R\$ 1.887,76	R\$	185.000,00
7	92	R\$ 1.847,83	R\$	170.000,00
8	178	R\$ 2.022,47	R\$	360.000,00
9	162	R\$ 2.160,49	R\$	350.000,00
10	87	R\$ 1.666,67	R\$	145.000,00
11	135	R\$ 2.074,07	R\$	280.000,00

Figura 1. Dados da Amostra

Estatística de regressão						
R múltiplo	0,855008191					
R-Quadrado	0,731039007	FORTE	O QUANTO O MODELO SE EXPLICA			A
R-quadrado aj	0,701154452					-
Erro padrão	103,4551776					
Observações	11					
ANOVA						
	gl	SQ	MQ	F	F de significação	
Regressão	1	261817,229	261817,23	24,46210134	0,000795747	Τ
Resíduo	9	96326,76391	10702,974	5,117355029		
Total	10	358143,9929		OK		
	Coeficientes	Erro padrão	Stat t	valor-P		
Interseção	1410,709494	128,6876324	10,962277	1,65724E-06		
ÁREA (m²)	4,359738821	0,881482292	4,9459176	0,08%	\sim	

Figura 2. Fig. 2A. Estatísticas da Regressão. Fig. 2B E Fig 2C. Análise do modelo.