

ISSN: 1806-549X

COMPOSIÇÃO E ATIVIDADE NEMATICIDA DE ÓLEOS ESSENCIAIS NO CONTROLE DE MELOIDOGYNE JAVANICA

Autores: LORENA GRACIELLY DE ALMEIDA, SINARA PATRÍCIA MENDES DA COSTA, RENATO MARTINS ALVES, VIVIANE APARECIDA COSTA CAMPOS, REGINA CÁSSIA FERREIRA RIBEIRO, DENILSON FERREIRA DE OLIVEIRA, GERALDO HUMBERTO SILVA

Introdução

As perdas causadas por fitonematoides tem causado grandes perdas da produção agrícola mundial, estima-se prejuízos de bilhões de euros por ano (BLEVE-ZACHEO et al., 2007). Fitonematoides parasitas causadores de lesões necróticas e indutores de nódulos no sistema radicular, provocam destruição das raízes dificultando ou até impedindo a absorção de água e nutrientes pela planta, podendo leva-la a morte.

O gênero de fitonematoides Meloidogyne, caracterizado pela formação de galhas nas raízes, quando em contato com as plantas é nocivo a elas, sendo capaz de infectar a maioria das culturas importantes comercialmente, chegando a causar prejuízos em escala mundial (Ferraz e Mendes, 1992; Huang, 1992). No Brasil entre os fitonematoides mais causadores de prejuízos está o *Meloidogyne javanica*.

O controle químico e biológico tem maior destaque no combate de nematoides de solo, que podem agir como alteradores de reprodução, e alterando a orientação dos parasitas em direção as raízes das plantas hospedeiras, a atuar também como nematicida (ARAUJO et al., 2002).

Os produtos de controle químico além poderem causar resistência nos fitonematoides em relação ao produto, causam danos ambientais. Diante disso a busca por produtos alternativos, de menor prejuízo ambiental tem aumentado, e uma opção que tem se mostrado viável é a utilização de óleos essenciais (Stangarlin, 2007). Os óleos essenciais apresentam em sua composição substancias compostas e variáveis, como hidrocarbonetos terpênicos, álcoois, álcoois simples e terpênicos, aldeídos, cetonas, fenóis, ésteres, éteres, óxidos, peróxidos, furanos, ácidos orgânicos, dentre outros, com maior destaque para as subetancias de peso molecular menor como sesquiterpenos e menoterpenos.

A utilização de óleos essenciais no controle desses parasitas vem se tornando uma técnica eficiente, pois tais óleos desenvolvem várias funções necessárias à sobrevivência das plantas, dentre elas a capacidade de defesa. Além dos inúmeros benefícios naturais dos óleos essenciais, se comparado aos métodos químicos utilizados atualmente para o controle de fitonematóides, que apresentam diversos pontos negativos tais como alta toxidade e custo elevado, os óleos essenciais não apresentam esses contratempos e atende a nova demanda por produtos que degradem menos o meio ambiente.

Portanto, atendendo a necessidade atual de produtos menos tóxicos, o presente trabalho tem o objetivo de testar os óleos essências das espécies *Lippia spp* (flor), e *Croton zehntnerique* (folha), e a partir desses óleos caracterizare-los através de cromatografia gasosa acoplada a espectrômetro de massas (CG-EM).

Materiais e métodos

A. Seleção e coleta das plantas

Foram coletadas partes vegetais de plantas, tais como folhas e flores, ambas as plantas foram coletadas no *Campus* da UNIMONTES/Janaúba-MG. O período de coleta era realizado sempre no período da manhã de 07:00h ás 10:00h. Depois de coletada as amostras vegetais eram separadas, colocadas em sacos plásticos, identificadas e mantidas em baixa temperatura no freezer até o dia da extração dos óleos essenciais.

B. Hidrodestilação

O método de extração utilizado é a técnica de arraste de vapor de água (hidrodestilação) utilizando aparelhos Clevenger. Para tanto, os materiais vegetais foram pesados e em seguida triturados em liquidificador com água destilada. Logo após esse material foi transferido para balões de fundo redondo. A extração é finalizada 4 horas após o incio do procedimento. Os óleos produzidos foram recolhidos com uma pipeta Pasteur e transferidos para recipientes de vidro com identificação, e armazenados em freezer até o procedimento de secagem. Utilizou-se sulfato de sódio anidro para secagem da água que ainda se encontrava misturada aos óleos essenciais. Após a secagem os óleos eram retornados para o freezer até o dia dos testes.

ISSN: 1806-549X

C. Caracterização química dos óleos essenciais

Para a identificação dos componentes voláteis presente nos óleos essenciais foi utilizado cromatógrafo gasoso acoplado a espectrômetro de massas (CG-EM) localizado no Instituto de Ciências Exatas e Tecnológicas da Universidade Federal de Viçosa (UFV/Campus Rio Paranaíba – MG. A coluna cromatográfica utilizada é do tipo capilar de sílica fundida e o hélio foi o gás de arraste empregado. As condições de análise foram realizadas de acordo com Passos *et al.* (2016). A identificação dos compostos foram obtidas por comparações dos espectros de massas com os existentes na biblioteca NIST, com a literatura e pelo índice de Kovat's (ADAMS, 2007).

B. Teste de mortalidade de juvenis de segundo estádio (J2) de Meloidogyne javanica submetidos aos óleos essenciais

O teste *in vitro* foi realizado no Laboratório de Fitopatologia da Unimontes Campus Janaúba-MG. Para realização do teste foram usados uma alíquota (100 ?L) de cada emulsão dos óleos de folha de canelinha (*Croton zehntnerique*) e flor de cidreirão (*Lippia sp.*) em solução aquosa de Tween 80 a 0,01 g/mL. Em uma placa de propileno com 96 cavidades foi adicionada em cada cavidade uma alíquota de 20 ?L de suspensão aquosa contento aproximadamente 20 juvenis do segundo estágio (J2) de *M. javanica*, obtidos de raízes de tomateiro e 100 ?L dos óleos solubilizados na solução de Tween. A concentração final de cada óleo foi de 1000 ?g/mL. Foram empregadas três testemunhas (Tween 80, água e o nematicida carbofuran (300 ?g/mL; concentração final de 207 ?g/mL). O ensaio foi montado em delineamento inteiramente ao acaso com 6 repetições. Após 48 horas avaliou-se o número de J2 mortos. Os resultados foram submetidos a análise de variância e as médias comparadas pelo teste Tukey a 5%.

Resultados e discussão

A. Atividade nematicida dos óleos produzidos pelas espécies testadas

De acordo com os resultados do teste *in vitro* o potencial de controle apresentado pelo óleo essencial da folha de canelinha (*Croton zehntnerique*) apresentou baixa atividade nematicida, enquanto o óleo essencial da flor de cidreirão (*Lippia* sp.) mostrou-se muito ativo contra J2 de *M. javanica*, apresentando resultado superior ao nematicida comercial Carbofuran usado como testemunha positiva.

Foram testados dois óleos diferentes com a mesma concentração em suspensão de juvenis de segundo estádio (J2) de *Meloidogyne javanica*. O teste *in vitro* mostrou sensibilidade diferente de *M. javanica* em relação aos dois óleos testados, apresentando maior sensibilidade ao óleo da espécie *Lippia* sp, conhecida popularmente por cidreirão. Os resultados do potencial nematicida de cada óleo estão relacionados com sua composição química.

Na literatura são encontrados trabalhos que mostram o poder nematicida de óleos essenciais de diversas espécies. De acordo com Gonçalves et al. (2016), a espécie *L. alba* mostrou ter potencial nematicida testado em *M. incognita*. Vale destacar que a espécie produzida no estado do Ceará e a *Lippia* sp. coletada em Janaúba-MG apresentam compostos químicos diferentes. De acordo com Salgado et al. (2010), a composição química e as substancias presentes em cada óleo tem a capacidade de atuar sobre os nematoides rompendo a sua membrana, afetando seu sistema nervoso ou sendo catalisadores de reações contrarias aos nematoides, podendo iniciar no desenvolvimento embrionário até a fase de J2, o que pode servir como parâmetro para explicar a atividade nematicida do óleo essencial de flor de cidreirão usado neste estudo.

B. Caracterização dos componentes dos óleos essenciais

Nas flores de cidreirão foram caracterizados os seguintes constituintes, *cis*-butenodiol ou *trans*-butenodiol; ácido 4-bromo fenil etil ftálico. Nas folhas de canelinha foram caracterizados os seguintes constituintes, estragol; acetato de eugenila ou 2-metoxi-3-prop-2-enilfenol; isoeugenol ou *p*-eugenol, presentes no oléo de *Croton zehntnerique*.

Conclusão

O óleo essencial da flor de *Lippia* sp. apresenta maior atividade nematicida contra *M. javanica* em relação ao óleo da folha de *Croton zehntnerique* e ao nematicida comercial. Em cidreirão e canelinha foram caracterizados 2 e 3 constituintes químicos, respectivamente.

ISSN: 1806-549X

Agradecimentos

A Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pela concessão da bolsa de incentivo a produtividade e desenvolvimento tecnológico (BIPDT) e ao PNPD/CAPES pela bolsa de pós-doutorado.

Referências bibliográficas

ARAÚJO, F.F. et al. Influência de Bacillus subtilis na eclosão, orientação e infecção de Heterodera glycines em soja. Ciência Rural, v.32, n.2, p.197-203, 2002.

GONÇALVES, L.A.; BARBOSA, L.C.A.; AZEVEDO, A.A.; CASALI, V.W.D.; NASCIMENTO, E.A. Produção e composição do óleo essencial de alfavaquinha (Ocimim selloi Benth.) em resposta a dois níveis de radiação solar. Rev. Bras. Plantas med., Unicamp, v. 6, n. 1, jan. 2003.

BLEVE-ZACHEO, T. et al. The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Tech, v.1, p.1-16, 2007.

ADAMS, R. P. Identification of essential oil components by gas chromatography/mass

Spectrometry. Illinois: allured publ corp carol stream, 2007. 804 p.

FERRAZ, E. e MENDES, m.l. 1992. O nematoidede galhas. Informe Agropecuario 16 (172): 43-45.

 $GONÇALVES, F.\ J.\ T.; BARBOSA, F.\ G.; LIMA, J.\ S.; COUTINHO, I.\ B.\ L.; OLIVEIRA, F.\ C.;$

GONÇALVES, F. J. T.; BARBOSA, F. G.; LIMA, J. S.; COUTINHO, I. B. L.; OLIVEIRA, F. C.;

ROCHA, R. R.; ANDRADE NETO, M. Atividade antagonista do óleo essencial de Lippia alba (Mill.) N. E. Brown (Verbenaceae) sobre Meloidogyne incognita (Kofoid & White) Chitwood. Revista Brasileira de Plantas Medicinais, n 1, 149-156, 2016.

PASSOS, L. O.; QUINTANS JÚNIOR, L. J.; ALVES, P. B.; MACHADO, S. M. F.; GUIMARÃES, A. G.; NOGUEIRA, P.C. L.; SILVA, G. H. A New ?-Triketone and Antinociceptive E'ect from the Essential Oil of the Leaves of Calyptranthes restingae Sobral (Myrtaceae). Medicinal & Aromatic Plants, n 5, 1-6, 2016.

ROCHA, R. R.; ANDRADE NETO, M. Atividade antagonista do óleo essencial de Lippia alba (Mill.) N. E. Brown (Verbenaceae) sobre Meloidogyne incognita (Kofoid & White) Chitwood. Revista Brasileira de Plantas Medicinais, n 1, 149-156, 2016.

SALGADO, A.P.S.P.; CARDOSO, M.G.; SOUZA, P.E.; SOUZA, J.A.; ABREU, C.M.P.; PINTO, J.E.B.P. Avaliação da atividade fungitóxica de óleos essenciais de folhas de Eucalyptus sobre Fusarium oxysporum, Botrytis cinerea e Bipolares sorokiniana.

Tabela 1: Atividade nematicida dos óleos essências de folha de canelinha e flor de cidreirão testados.

Tratamento	Parte da planta	J2 mortos (%)*
Lippia sp	flor	79,6a
C. zehntnerique	folha	9,5c
Carbofuran(207 ?g/mL)	-	48,8b
Água	-	1,6c
Tween	-	3,8c

Médias seguidas com a mesma letra não diferem estatisticamente entre si de acordo com o teste de Tukey (P ? 0,05).